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In this paper, we explore the Lax–Wendroff (LW) type time discretization as an alternative
procedure to the high order Runge–Kutta time discretization adopted for the high order
essentially non-oscillatory (ENO) Lagrangian schemes developed in [3,5]. The LW time dis-
cretization is based on a Taylor expansion in time, coupled with a local Cauchy–Kowalew-
ski procedure to utilize the partial differential equation (PDE) repeatedly to convert all time
derivatives to spatial derivatives, and then to discretize these spatial derivatives based on
high order ENO reconstruction. Extensive numerical examples are presented, for both the
second-order spatial discretization using quadrilateral meshes [3] and third-order spatial
discretization using curvilinear meshes [5]. Comparing with the Runge–Kutta time discret-
ization procedure, an advantage of the LW time discretization is the apparent saving in
computational cost and memory requirement, at least for the two-dimensional Euler equa-
tions that we have used in the numerical tests.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we are interested in solving the compressible Euler gas dynamic equations written in the Lagrangian form.
Lagrangian methods and Arbitrary Lagrangian–Eulerian methods (ALE, [12,20]) which contain a Lagrangian phase, are widely
used in astrophysics and computational fluid dynamics. In the Lagrangian methods, a computational cell moves with the
flow velocity. Comparing with the Eulerian method, Lagrangian type methods can reduce the numerical error due to the
advection terms in the conservation equations and can capture contact discontinuities sharply [16]. Even though the Euler
equations are much simpler in the Lagrangian framework, in the multi-dimensional case they are actually more difficult to
solve since the mesh moves with the fluid and can easily get distorted. In the past years, many efforts have been made to
develop Lagrangian methods. Some algorithms are developed from the nonconservative form of the Euler equations of which
density, velocity and internal energy are solved directly, for example, those discussed in [1,2,18,29]. The other class of
Lagrangian algorithms starts from the conservative form of the Euler equations. These schemes solve the conservative quan-
tities such as mass, momentum and total energy directly, thus guaranteeing exact conservation. Examples include [6,14,17].
. All rights reserved.
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Most existing Lagrangian type schemes for Euler equations are first or at most second-order accurate. In [3], Cheng and
Shu developed a class of Lagrangian type schemes for solving the Euler equations which are based on the high order ENO
reconstruction both in the Cartesian and cylindrical coordinates. These schemes are conservative for the density, momentum
and total energy, and can maintain formal high order accuracy both in space and in time for the one-dimensional case and
formal second-order accuracy for the two-dimensional case if the mesh consists of quadrilaterals with straight-line edges. In
[5], Cheng and Shu developed a third-order Lagrangian type scheme on curved quadrilateral meshes in two space
dimensions.

The time discretization used in [3,5] is based on high order TVD Runge–Kutta (RK) methods [26]. An alternative time dis-
cretization technique is the Lax–Wendroff (LW) type procedure. Lax–Wendroff time discretization is based on the idea of the
classical Lax–Wendroff scheme [15], and it relies on converting all the time derivatives in a temporal Taylor expansion into
spatial derivatives by repeatedly using the partial differential equation (PDE) and its differentiated versions. Lax–Wendroff
type time discretization usually produces high order accuracy with a more compact spatial stencil. It also uses the original
PDE more extensively. The original finite volume ENO scheme in [11] used this approach for the time discretization. Recently
a Lax–Wendroff type time discretization procedure for high order finite difference WENO schemes was developed by Qiu and
Shu [22]. This approach was also used by Titarev and Toro [28] and Schwartzkopff et al. [23], termed ADER (arbitrary high
order schemes utilizing higher order derivatives), to construct a class of high order schemes for conservation laws in finite
volume version. The Lax–Wendroff type time discretization was also used in the discontinuous Galerkin method [21]. De-
tailed descriptions of the Lax–Wendroff procedure for finite volume and discontinuous Galerkin schemes solving Euler equa-
tions in the Eulerian coordinates are given in, e.g. [10,9,8].

In this paper, we use the LW time discretization to develop a high order conservative Lagrangian type scheme for the
compressible Euler equations. Comparing with the Runge–Kutta time discretization procedure, an advantage of the LW time
discretization is the apparent saving in computational cost and memory requirement, at least for the two-dimensional Euler
equations that we have used in the numerical tests. We provide a series of one and two-dimensional numerical examples
both in quadrilateral meshes (second-order scheme) and in curvilinear meshes (third-order scheme) to demonstrate the per-
formance of the method.

The organization of the paper is as follows. In Section 2, we describe the construction of the schemes with algorithm for-
mulation and numerical examples in one space dimension. In Section 3, two-dimensional schemes with numerical examples
are presented. Concluding remarks are given in Section 4.

2. One-dimensional case

2.1. The compressible Euler equations in the Lagrangian formulation

In fluid dynamics, the integral form of the conservation law of mass, momentum and energy can be expressed as:
d
dt

Z
Xt

UdV þ
Z
@Xt

FdS ¼ 0; ð1Þ
where Xt is the moving control volume and @Xt is the boundary. The vector of the conserved variables U and the flux vector F
are given by
U ¼
q
M
E

0
B@

1
CA; F ¼

fD

fM

fE

0
B@

1
CA ¼

ðu� _xÞ � nq
ðu� _xÞ � nMþ p � n
ðu� _xÞ � nEþ pu � n

0
B@

1
CA; ð2Þ
where q is the density, u is the velocity, M ¼ qu is the momentum, E is the total energy and p is the pressure. _x is the velocity
of the control volume boundary @Xt , and n denotes the unit outward normal to @Xt . The system (1) is the governing equation
for unsteady compressible flows in Cartesian coordinates.

In this paper, we consider the ideal gas. The following well known equation of state (EOS) is used to complete the set of
equations
p ¼ ðc� 1Þqe ð3Þ
where e ¼ E
q� 1

2 juj
2 is the specific internal energy, and c is a constant representing the ratio of specific heat capacities of the

fluid.
This paper focuses on solving the governing equations (1) and (2) in a Lagrangian framework, in which it is assumed that
_x ¼ u; ð4Þ
hence the vectors U and F take the simpler form
U ¼
q
M
E

0
B@

1
CA; F ¼

0
p � n

pu � n

0
B@

1
CA: ð5Þ
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2.2. The construction of the scheme in the 1D case

We develop a conservative Lagrangian finite volume scheme by solving the conserved variables density, momentum and
total energy directly. All the conserved variables are in the form of cell averages.

The spatial domain Xt is discretized into N computational cells IiðtÞ ¼ ½xi�1=2ðtÞ; xiþ1=2ðtÞ� of sizes DxiðtÞ ¼ xiþ1=2ðtÞ � xi�1=2ðtÞ
with i ¼ 1; . . . ;N. We denote Dx ¼maxiDxi. For a given cell IiðtÞ, the values of the cell averages of mass, momentum and total
energy, denoted by �qiðtÞ; MiðtÞ and EiðtÞ, are defined as follows:
�qiðtÞ ¼
1

DxiðtÞ

Z
IiðtÞ

qðx; tÞdx; MiðtÞ ¼
1

DxiðtÞ

Z
IiðtÞ

Mðx; tÞdx; EiðtÞ ¼
1

DxiðtÞ

Z
IiðtÞ

Eðx; tÞdx:
Using the governing equation (1) on every single cell IiðtÞ, we have
d
dt

�qiðtÞDxiðtÞ
MiðtÞDxiðtÞ
EiðtÞDxiðtÞ

0
B@

1
CA ¼ �

fDðUðxiþ1=2ðtÞ; tÞÞ � fDðUðxi�1=2ðtÞ; tÞÞ
fMðUðxiþ1=2ðtÞ; tÞÞ � fMðUðxi�1=2ðtÞ; tÞÞ
fEðUðxiþ1=2ðtÞ; tÞÞ � fEðUðxi�1=2ðtÞ; tÞÞ

0
B@

1
CA: ð6Þ
After integrating Eqs. (4) and (6) over ½tn; tnþ1�, we obtain:
xnþ1
i�1=2 ¼ xn

i�1=2 þ
Z tnþ1

tn

uðxi�1=2ðtÞ; tÞdt ð7Þ
and
�qnþ1
i Dxnþ1

i

Mnþ1
i Dxnþ1

i

Enþ1
i Dxnþ1

i

0
B@

1
CA ¼

�qn
i Dxn

i

Mn
i Dxn

i

En
i Dxn

i

0
B@

1
CA� Z tnþ1

tn

fDðUðxiþ1=2ðtÞ; tÞÞ � fDðUðxi�1=2ðtÞ; tÞÞ
fMðUðxiþ1=2ðtÞ; tÞÞ � fMðUðxi�1=2ðtÞ; tÞÞ
fEðUðxiþ1=2ðtÞ; tÞÞ � fEðUðxi�1=2ðtÞ; tÞÞ

0
B@

1
CAdt: ð8Þ
For the simplicity of description, in the following, we denote f as a component of the flux vector F. Notice that f and U in
the equations above represent the values of the flux and the conservative variables of the solution, not their cell
averages. In this paper, we will always use U to denote the values of the solution, and U� to denote the numerically
reconstructed values at a given point along the cell boundary from the cell averages U. In order to obtain a fully discrete
scheme from (7) and (8), we have to do two things. First, we would need to find an average velocity û (see Remark 4) to
replace the physical velocity u in Eq. (7) and a numerical flux to replace the physical flux f in Eq. (8). Second, we would
need to choose a numerical method to approximate the integrals. Suppose we want to get a rth order accurate scheme
in both space and time, we should find a numerical flux f̂ ðU�;UþÞ which is at least a rth order approximation to the
physical flux f ðUÞ, an average velocity û which is at least a rth order approximation to the physical velocity u, and at
least a ðr þ 1Þth order numerical integration to approximate the integral on the right hand side of (7) and (8). That
is, we require
f̂ U�ðxiþ1=2ðtÞ; tÞ;Uþðxiþ1=2ðtÞ; tÞ
� �

¼ f Uðxiþ1=2ðtÞ; tÞ
� �

þ OðDxrÞ;
û u�ðxiþ1=2ðtÞ; tÞ;uþðxiþ1=2ðtÞ; tÞ
� �

¼ uðxiþ1=2ðtÞ; tÞ þ OðDxrÞ; ð9ÞZ tnþ1

tn

f̂ U�ðxiþ1=2ðtÞ; tÞ;Uþðxiþ1=2ðtÞ; tÞ
� �

dt ¼ Dt
XK

k¼0

akf̂ ðtn þ bkDtÞ þ OðDtrþ1Þ;

Z tnþ1

tn

û u�ðxiþ1=2ðtÞ; tÞ; uþðxiþ1=2ðtÞ; tÞ
� �

dt ¼ Dt
XK

k¼0

akûðtn þ bkDtÞ þ OðDtrþ1Þ;
where ak are the coefficients of the Gaussian quadrature and tn þ bkDt are the Gaussian quadrature points.
Once we have a consistent and Lipschitz continuous numerical flux, the following relationship holds:
f̂ ðU�;UþÞ ¼ f ðUÞ þ OðjU� U�j; jU� UþjÞ: ð10Þ
Therefore, as long as we can get an approximation to the value U with at least rth order accuracy, the numerical flux will be a
rth order approximation to the physical flux. Combined with the numerical integration, it is clear that we would only need to
find an approximation at the Gaussian quadrature points with rth order accuracy:
U�ðxiþ1=2ðtn þ bkDtÞ; tn þ bkDtÞ ¼ Uðxiþ1=2ðtn þ bkDtÞ; tn þ bkDtÞ þ OðDxrÞ; ð11Þ
u�ðxiþ1=2ðtn þ bkDtÞ; tn þ bkDtÞ ¼ uðxiþ1=2ðtn þ bkDtÞ; tn þ bkDtÞ þ OðDxrÞ:
Since we are developing a finite volume scheme, we only have the information of the cell averages of the solution at the time
tn. We would therefore use a Taylor expansion in time to obtain
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U�ðxiþ1=2ðtn þ bkDtÞ; tn þ bkDtÞ ¼ Un�
iþ1=2 þ

Xr�1

l¼1

ðbkDtnÞl

l!

dlUn�
iþ1=2

dtl
þ OðDtrÞ; ð12Þ

u�ðxiþ1=2ðtn þ bkDtÞ; tn þ bkDtÞ ¼ un�
iþ1=2 þ

Xr�1

l¼1

ðbkDtnÞl

l!

dlun�
iþ1=2

dtl
þ OðDtrÞ;
where Un�
iþ1=2 ¼ U�ðxiþ1=2ðtnÞ; tnÞ and un�

iþ1=2 ¼ u�ðxiþ1=2ðtnÞ; tnÞ.
In order to guarantee (11) and (12), we would need to use reconstruction to obtain the values Un�

iþ1=2, un�
iþ1=2 and

dlUn�
iþ1=2

dtl ,
dlun�

iþ1=2

dtl

from the cell average variables Un
i at time tn such that the following holds:
Un�
iþ1=2 ¼ Un

iþ1=2 þ OðDxrÞ; ð13Þ
un�

iþ1=2 ¼ un
iþ1=2 þ OðDxrÞ
and
dlUn�
iþ1=2

dtl
¼

dlUn
iþ1=2

dtl
þ OðDtr�lÞ; ð14Þ

dlun�
iþ1=2

dtl
¼

dlun
iþ1=2

dtl
þ OðDtr�lÞ; l ¼ 1;2; . . . ; r � 1:
The requirement (13) is relatively easy to satisfy, as many well known reconstructions can be applied. To satisfy (14), we
would need to use a local Cauchy–Kowalewski procedure, which is a key step in the Lax–Wendroff procedure, to convert

the time derivatives
dlUn�

iþ1=2

dtl and
dlun�

iþ1=2

dtl for l ¼ 1;2; . . . ; r � 1, to spatial derivatives
@lUn�

iþ1=2

@xl and
@lun�

iþ1=2

@xl . We take the scalar conser-
vation law ut þ f ðuÞx ¼ 0 as a example, the procedure is:
ut ¼ �f 0ux;

uxt ¼ �½f 00ðuxÞ2 þ f 0uxx�;
utt ¼ �½f 00utux þ f 0uxt�; ð15Þ
uxxt ¼ �½f 000ðuxÞ3 þ 3f 00uxuxx þ f 0uxxx�;
uxtt ¼ �½f 000ðuxÞ2ut þ f 00ð2uxuxt þ utuxxÞ þ f 0uxxt �;
uttt ¼ �½f 000ðutÞ2ux þ f 00ð2utuxt þ uxuttÞ þ f 0uxtt�:
The procedure for the Euler equations is more complicated and will be introduced when we describe the actual algorithm.
Through this procedure, we now only require the following to guarantee the validity of (13) and (14):
@lUn�
iþ1=2

@xl
¼
@lUn

iþ1=2

@xl
þ OðDxr�lÞ; ð16Þ

@lun�
iþ1=2

@xl
¼
@lun

iþ1=2

@xl
þ OðDxr�lÞ; l ¼ 0;1; . . . ; r � 1:
Fortunately, the above equation is satisfied by any polynomial reconstruction of degree r � 1, for example the ENO recon-
struction. Therefore, we can obtain an arbitrary rth order accurate scheme in space and time by using the standard ENO
reconstruction and the Lax–Wendroff procedure outlined above.

Remark 1. In the analysis above, we have not distinguished between Dx and Dt when referring to the order of accuracy. This
is because of the CFL condition:
Dtn ¼ k min
i¼1;...;N

Dxn
i =cn

i

� �
;

where ci is the sound speed in the cell Ii. The Courant number k is chosen as 0.6 in our one-dimensional computation.

Remark 2. We use the ENO idea to reconstruct polynomial functions on each Ii by using the information of the cell Ii and its
neighbors, see [11,3]. The procedure allows us to obtain arbitrarily high order accurate approximation by a suitable recon-
struction. In this paper, we use only second and third-order reconstructions in our numerical examples.

Remark 3. After the reconstruction, we obtain two approximation values at each cell boundary point xi�1=2, one from the
ENO reconstruction polynomial in the cell Ii and the other one from that in the cell Iiþ1. A consistent Lipschitz continuous
numerical flux is then used. In this paper, we will use the following four typical numerical fluxes: (1) the Godunov flux;
(2) the Dukowicz flux; (3) the Lax–Friedrichs (L–F) flux; (4) the HLLC flux, although we will only show the results obtained
with the Dukowicz flux and the HLLC flux to save space. We refer to [3] for implementation details of these fluxes in the
context of Lagrangian schemes and will not repeat them here.
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Remark 4. In the Lagrangian formulation, the grid moves with the fluid. In every time step, we should determine the new
location of the grid points. This is determined by the velocity at the cell boundary point xi�1=2. At this point, we have two
approximate values of velocity, one from the left cell Ii and the other from the right cell Iiþ1, which are obtained from the
reconstructed values of density and momentum. For the Godunov flux or the Dukowicz flux, we solve (exactly or approxi-
mately) the Riemann problem at xi�1=2, hence we obtain the value of velocity through this Riemann solver. For the L–F flux or
the HLLC flux, the velocity is defined as the Roe average of the two reconstructed values from both sides
ûiþ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiq�iþ1=2

p
u�iþ1=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
qþiþ1=2

q
uþiþ1=2ffiffiffiffiffiffiffiffiffiffiffiffiq�iþ1=2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
qþiþ1=2

q : ð17Þ
2.3. Algorithm description

We now describe our algorithm in detail. Starting from the mesh and the approximate cell averages of the solution at time
level tn, we will proceed as follows.

1. At each fixed xiþ1=2, use the rth order characteristic-wise ENO reconstruction to obtain the value Un�
iþ1=2 and

@lUn�
iþ1=2

@xl , for
l ¼ 1;2; . . . ; r � 1, from the cell averages Un

i at tn.

2. Calculate the derivatives in t of the variables
@lUn�

iþ1=2

@tl and
@lun�

iþ1=2

@tl , for l ¼ 1;2; . . . ; r � 1, at each xiþ1=2, using the information
from the ENO reconstruction in the following way: First, compute u; p;ux; px by using Un� and @Un�

@x
u ¼ M=q;
p ¼ ðc� 1ÞðE� 0:5qu2Þ;
ux ¼ ðMx � uqxÞ=q; ð18Þ
px ¼ ðc� 1ÞðEx � 0:5uxM � 0:5uMxÞ:
Then, compute qt ;Mt ;ut ; Et ; pt
qt ¼ �Mx;

Mt ¼ �uxM � uMx � px;

ut ¼ ðMt � uqtÞ=q; ð19Þ
Et ¼ �Exu� Eux � pxu� pux;

pt ¼ �upx � cpux:
In order to compute qtt;Mtt; Ett , first compute uxx; pxx;qxt ;Mxt ; Ext ;uxt ; pxt
uxx ¼ ðMxx � uqxx � 2uxqxÞ=q;
pxx ¼ ðc� 1ÞðExx � 0:5ðMuxx þ 2uxMx þ uMxxÞÞ;
qxt ¼ �Mxx;

Mxt ¼ �2uxMx � uMxx �Muxx � pxx; ð20Þ
Ext ¼ �2uxEx � uExx � Euxx � 2pxux � puxx � upxx;

uxt ¼ ðMxt � uqxt � utqx � uxqtÞ=q;
pxt ¼ �upxx � cpuxx � ð1þ cÞuxpx;
then we can compute qtt;Mtt; Ett; ptt;utt
qtt ¼ �Mxt ;

Mtt ¼ �uMxt �Muxt � pxt � uxMt � utMx;

Ett ¼ �uExt � Euxt � puxt � upxt � uxEt � utEx � pxut � ptux; ð21Þ
ptt ¼ �upxt � cpuxt � utpx � cptux;

utt ¼ ðMtt � 2qtut � uqttÞ=q:
This procedure can be continued to higher t derivatives.

3. Compute
dlUn�

iþ1=2

dtl and
dlun�

iþ1=2

dtl , for l ¼ 1;2; . . . ; r � 1, via
dUn�
iþ1=2

dt
¼
@Un�

iþ1=2

@t
þ un�

iþ1=2

@Un�
iþ1=2

@x
;

dun�
iþ1=2

dt
¼
@un�

iþ1=2

@t
þ un�

iþ1=2

@un�
iþ1=2

@x
;
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d2Un�
iþ1=2

dt2 ¼ @

@t

dUn�
iþ1=2

dt

 !
þ un�

iþ1=2
@

@x

dUn�
iþ1=2

dt

 !
; ð22Þ

d2un�
iþ1=2

dt2 ¼ @

@t

dun�
iþ1=2

dt

 !
þ un�

iþ1=2
@

@x

dun�
iþ1=2

dt

 !
:

4. Compute the value of the solution at the Gaussian quadrature points U�k ¼ U�ðxiþ1=2ðtn þ bkDtÞ; tn þ bkDtÞ and
u�k ¼ u�ðxiþ1=2ðtn þ bkDtÞ; tn þ bkDtÞ for k ¼ 1;2; . . . ;K , via
U�k ¼ Un�
iþ1=2 þ

Xr�1

l¼1

ðbkDtnÞl

l!
dlU�

dtl
; ð23Þ

u�k ¼ un�
iþ1=2 þ

Xr�1

l¼1

ðbkDtnÞl

l!
dlu�

dtl
:

5. Compute the numerical flux f̂ ðU�ðtn þ bkDtÞ;Uþðtn þ bkDtÞÞ and the velocity ûkðU�k ;U
þ
k Þ, for k ¼ 1;2; . . . ;K , by one of the

following four numerical fluxes: Godunov flux, Dukowicz flux, L–F flux, or HLLC flux.
6. Compute the time averaged flux �f iþ1=2 ¼ 1

Dtn

R tnþ1
tn

f̂ ðU�ðxiþ1=2ðtÞ; tÞ;Uþðxiþ1=2ðtÞ; tÞÞdt and time averaged velocity
uiþ1=2 ¼ 1

Dtn

R tnþ1
tn

uðxiþ1=2ðtÞ; tÞdt via
�f iþ1=2 ¼
XK

k¼0

akf̂ U�k ;U
þ
k

� �
; uiþ1=2 ¼

XK

k¼0

akû U�k ;U
þ
k

� �
: ð24Þ
7. Compute the updated values xnþ1
iþ1=2 and Unþ1

i at tnþ1 via
xnþ1
iþ1=2 ¼ xn

iþ1=2 þ Dtnuiþ1=2;

�qnþ1
i Dxnþ1

i ¼ �qn
i Dxn

i � Dtn
�f D

iþ1=2 � �f D
i�1=2

� �
;

Mnþ1
i Dxnþ1

i ¼ Mn
i Dxn

i � Dtn
�f M

iþ1=2 � �f M
i�1=2

� �
; ð25Þ

Enþ1
i Dxnþ1

i ¼ En
i Dxn

i � Dtn
�f E

iþ1=2 � �f E
i�1=2

� �
:

2.4. Numerical examples in the 1D case

2.4.1. Accuracy test
This is a problem with smooth solutions. We use this problem to test the accuracy of our schemes. The initial condition is
qðx;0Þ ¼ 2þ sinð2pxÞ; uðx; 0Þ ¼ 1þ 0:1 sinð2pxÞ; pðx;0Þ ¼ 1; x 2 ½0;1�
with a periodic boundary condition. We take the numerical results by using the fifth-order Eulerian WENO scheme [13] with
8000 grids as the reference ‘‘exact” solution to compute the errors. To overcome the accuracy degeneracy phenomenon of the
third-order ENO scheme, we have used the modified ENO procedure in [25], see [3] for more details. We summarize the er-
rors and numerical rate of convergence of our second-order and third-order Lagrangian LW-ENO schemes with the Dukowicz
flux at t ¼ 1 in Tables 1 and 2. CPU time is also included in these tables. We always run our code several times and list the
average CPU time when this time is less than 10s. For the purpose of comparison, the results for the Runge–Kutta time
order scheme. L1 error. Runge–Kutta and Lax–Wendroff (boldface) time discretizations.

Time Density Order Momentum Order Energy Order CPU time (s)

RK 1.64E�3 – 2.21E�3 – 4.27E�3 – 0.15
LW 9.93E�4 – 1.37E�3 – 2.66E�3 – 0.11
RK 4.83E�4 1.76 6.09E�4 1.86 1.22E�3 1.80 0.36
LW 2.83E�4 1.81 3.65E�4 1.90 7.26E�4 1.87 0.22
RK 1.27E�4 1.93 1.59E�4 1.94 3.18E�4 1.95 1.18
LW 7.49E�5 1.92 9.79E�5 1.90 1.92E�4 1.92 0.66
RK 3.40E�5 1.90 4.24E�5 1.91 8.45E�5 1.91 4.38
LW 2.00E�5 1.91 2.54E�5 1.95 5.03E�5 1.93 2.36
RK 8.90E�6 1.94 1.10E�5 1.94 2.20E�5 1.94 17.3
LW 5.07E�6 1.98 6.40E�6 1.99 1.27E�5 1.98 9.1
RK 2.29E�6 1.96 2.80E�6 1.98 5.59E�6 1.98 69
LW 1.26E�6 2.01 1.59E�6 2.01 3.13E�6 2.02 36



Table 2
Third-order scheme. L1 error. Runge–Kutta and Lax–Wendroff (boldface) time discretizations.

Nx Time Density Order Momentum Order Energy Order CPU time (s)

100 RK 5.22E�5 – 6.95E�5 – 1.32E�4 – 0.48
LW 3.52E�5 – 4.99E�5 – 8.97E�5 – 0.22

200 RK 6.59E�6 2.99 8.78E�6 2.98 1.66E�5 2.99 1.67
LW 4.45E�6 2.99 6.28E�6 2.99 1.13E�5 2.99 0.66

400 RK 8.25E�7 3.00 1.10E�6 3.00 2.08E�6 3.00 6.40
LW 5.56E�7 3.00 7.84E�7 3.00 1.41E�6 3.00 2.51

800 RK 1.03E�7 3.00 1.37E�7 3.00 2.61E�7 3.00 25.2
LW 6.95E�8 3.00 9.79E�8 3.00 1.77E�7 3.00 9.62

1600 RK 1.29E�8 3.00 1.72E�8 3.00 3.26E�8 3.00 101
LW 8.69E�9 3.00 1.22E�8 3.00 2.21E�8 3.00 38.4

3200 RK 1.61E�9 3.00 2.14E�9 3.01 4.06E�9 3.00 415
LW 1.08E�9 3.01 1.52E�9 3.01 2.75E�9 3.01 155
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discretization of the same Lagrangian ENO scheme [3] are also included. We can see that the Lax–Wendroff time discretiza-
tion produces smaller errors and costs less CPU time.

2.4.2. Lax shock tube problem
This is a Riemann problem with the following initial condition
Fig
ðqL; uL; pLÞ ¼ ð0:445;0:698;3:528Þ; ðqR; uR; pRÞ ¼ ð0:5; 0;0:571Þ:
Fig. 1 shows the result using the Dukowicz flux with 100 initially uniform cells at t ¼ 1. The left plot is the second-order
result and the right one is the third-order result.

Comparing with the exact solution and the result by using Runge–Kutta time discretization, the Lax–Wendroff time dis-
cretization can produce the same satisfactory non-oscillatory results with high resolution.

2.4.3. Noh problem
In this problem [19], a shock is generated in a perfect ideal gas ðc ¼ 5=3Þ by bringing the cold gas to rest at a rigid wall.

The computational domain is ½0;1� and the initial condition is ðq;u; eÞ ¼ ð1;�1;0Þ. We use an initially uniform mesh of 200
cells. Fig. 2 shows the result of the density at t ¼ 0:6 using the Dukowicz flux. The left plot is the second-order result and the
right one is the third-order result. The Lax–Wendroff time discretization produces similar results as the Runge–Kutta time
discretization for this test case.

2.4.4. Two interacting blast waves
This is a test problem involving interactions of strong shock waves [29]. The initial condition consists of two discontinu-

ities. The density and the velocity are unity everywhere and the pressure is large to the left and right and small in the middle:
q ¼ 1; u ¼ 1; p ¼
103; 0 < x < 0:1;
10�2; 0:1 < x < 0:9;
102; 0:9 < x < 1:0:

8><
>:
A reflective boundary condition is applied at both x ¼ 0 and x ¼ 1. We use an initially uniform mesh with 400 cells to
compute this problem. Fig. 3 is the density at time t ¼ 0:038. The left plot is the second-order result and the right one is
. 1. The density of the Lax problem using the Dukowicz flux with 100 cells at t ¼ 1. Left: second-order schemes; right: third-order schemes.



Fig. 2. The density of Noh problem using the Dukowicz flux with 200 cells at t ¼ 0:6. Left: second-order schemes; right: third-order schemes.

Fig. 3. The density of the blast waves problem using the HLLC flux with 400 cells at t ¼ 0:038. Left: second-order schemes; right: third-order schemes.
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the third-order result. For this problem, it seems that the Lax–Wendroff time discretization does not produce any spurious
overshoots near the contact discontinuity, which is better than the performance of the Runge–Kutta time discretization.

2.4.5. Leblanc shock tube problem
This is a difficult test case with a very strong shock. The initial condition is as follows:
ðq; u; eÞ ¼ ð1;0; 0:1Þ; 0 6 x < 3;

ðq; u; eÞ ¼ ð0:001;0;10�7Þ; 3 < x 6 9:
The computational domain is ½0;9� filled with an ideal gas with c ¼ 5=3. We use 1000 initially uniform cells to compute this
problem to t ¼ 6. Fig. 4 is the second-order result and Fig. 5 is the third-order result. By comparing with the exact solution,
we can see that the positions of the contact discontinuity and the shock can be maintained better when high order schemes
are used. Notice that in this and a few other numerical examples, there are noticeable spurious oscillations in the numerical
results which are not typical for high order non-oscillatory schemes in Eulerian coordinates. This is one of the disadvantages
of Lagrangian methods, which already appears for first-order schemes. In fact, higher order non-oscillatory Lagrangian meth-
ods often have smaller spurious oscillations than the first-order methods, see for example [3] for more details. The Lax–
Wendroff time discretization performs similarly (slightly better) as the Runge–Kutta time discretization for this case.

2.4.6. Shock entropy wave interactions
This problem [27] contains both shocks and complex smooth region structures. The computational domain is ½�10;5� and

the initial condition is
ðq; u; eÞ ¼ ð3:85714;2:629369;10:33333Þ; x < �4;
ðq; u; eÞ ¼ ð1þ � sinðkxÞ; 0;1Þ; x P �4;
where � and k are the amplitude and wave number of the entropy wave. We take � ¼ 0:2 and k ¼ 5 in our test and the final
time is t ¼ 1:8. Figs. 6 and 7 are the second and third-order results using 200 cells with the Dukowicz flux and the HLLC flux



Fig. 4. Second-order results: internal energy of the Leblanc problem using 1000 cells at t ¼ 6. Left: with the Dukowicz flux; right: with the HLLC flux.

Fig. 5. Third-order results: internal energy of the Leblanc problem using 1000 cells at t ¼ 6. Left: with the Dukowicz flux; right: with the HLLC flux.

Fig. 6. Second-order results: density of the shock entropy wave interactions problem using 200 cells at t ¼ 1:8. Left: with the Dukowicz flux; right: with the
HLLC flux.
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respectively. We can see clearly that for this example the third-order scheme has much better resolution than the second-
order one on the same mesh and the Lax–Wendroff time discretization produces less spurious overshoots than the Runge–
Kutta time discretization.



Fig. 7. Third-order results: density of the shock entropy wave interactions problem using 200 cells at t ¼ 1:8. Left: with the Dukowicz flux; right: with the
HLLC flux.
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3. Two-dimensional case

3.1. Construction of the scheme in the 2D case

In the 2D case, we develop our scheme on both quadrilateral and curvilinear (curved quadrilateral) meshes. In [5], it is
demonstrated that, because of the error from the quadrilateral mesh with straight-line edges, Lagrangian methods on quad-
rilateral meshes are at most second-order accurate. In order to obtain a third-order accurate method, we must consider cur-
vilinear meshes. The 2D spatial domain Xt is discretized into Nx � Ny computational cells. IijðtÞ is the cell identified by its four
vertices ðxi�1=2;j�1=2ðtÞ; yi�1=2;j�1=2ðtÞÞ; ðxiþ1=2;j�1=2ðtÞ; yiþ1=2;j�1=2ðtÞÞ; ðxi�1=2;jþ1=2ðtÞ; yi�1=2;jþ1=2ðtÞÞ and ðxiþ1=2;jþ1=2ðtÞ; yiþ1=2;jþ1=2ðtÞÞ.
For the curved quadrilateral meshes with quadratic curved boundaries, the information of the four middle points along each
side of the curved quadrilateral is also needed to identify the cell. We use hij to denote the mesh size (the diameter of the
smallest circle containing the cell Iij) and h ¼maxi;jhij. sijðtÞ denotes the area of the cell IijðtÞ. The fluid velocity
ðui�1=2;j�1=2;v i�1=2;j�1=2Þ is defined at the vertex of the mesh. For the curved quadrilateral meshes, the fluid velocity is also
needed at the center along each side of the curved quadrilateral cell. Since we are using a non-staggered mesh, the conser-
vative variables are stored in the form of cell averages. The values of the cell averages of density �qijðtÞ, x-momentum MijðtÞ, y-
momentum NijðtÞ and total energy EijðtÞ are defined as follows:
�qijðtÞ ¼
1

sijðtÞ

Z Z
IijðtÞ

qðxðtÞ; yðtÞ; tÞdxdy;

MijðtÞ ¼
1

sijðtÞ

Z Z
IijðtÞ

MðxðtÞ; yðtÞ; tÞdxdy;

NijðtÞ ¼
1

sijðtÞ

Z Z
IijðtÞ

NðxðtÞ; yðtÞ; tÞdxdy;

EijðtÞ ¼
1

sijðtÞ

Z Z
IijðtÞ

EðxðtÞ; yðtÞ; tÞdxdy:
The construction of the scheme in 2D is similar to the 1D case. The main difference is that, in the 2D case, we have to approx-
imate the multiple integral both in time and along the edge of the cell to obtain the numerical flux.

As in the 1D case, after using the equation on IijðtÞ and integrating over ½tn; tnþ1�, we obtain
xnþ1
i�1=2;j�1=2 ¼ xn

i�1=2;j�1=2 þ
Z tnþ1

tn

uðxi�1=2ðtÞ; yj�1=2ðtÞ; tÞdt; ð26Þ

ynþ1
i�1=2;j�1=2 ¼ yn

i�1=2;j�1=2 þ
Z tnþ1

tn

vðxi�1=2ðtÞ; yj�1=2ðtÞ; tÞdt; ð27Þ

�qnþ1
ij snþ1

ij

Mnþ1
ij snþ1

ij

Nnþ1
ij snþ1

ij

Enþ1
ij snþ1

ij

0
BBBBB@

1
CCCCCA ¼

�qn
ijs

n
ij

Mn
ijs

n
ij

Nn
ijs

n
ij

En
ijs

n
ij

0
BBBBB@

1
CCCCCA�

Z tnþ1

tn

Z
@Iij

fDðUðxðtÞ; yðtÞ; tÞÞ
fMðUðxðtÞ; yðtÞ; tÞÞ
fNðUðxðtÞ; yðtÞ; tÞÞ
fEðUðxðtÞ; yðtÞ; tÞÞ

0
BBB@

1
CCCAdldt: ð28Þ
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We would like to obtain a fully discrete scheme from the above equations. First we have to use a numerical flux to replace
the physical flux on every edge of the mesh and use a numerical velocity to replace the physical velocity at each vertex of the
mesh and the middle point along each side of the curved quadrilateral. Second, an approximation to the integral should be
chosen. If we want to get a rth order accurate scheme, then the numerical flux should approximate the physical flux to at
least rth order accuracy; the numerical integration to

R
@Ii;j

should be at least rth order accurate; and the numerical integration
to
R tnþ1

tn
should be at least ðr þ 1Þth order accurate. We use S to denote the edges of the cell Ii;j; ls to denote the length of the

sth edge, Q to denote the Gaussian quadrature points on every edge, xq to denote the corresponding quadrature coefficients,
K to denote the Gaussian quadrature points in time interval ½tn; tnþ1� and ak to denote the corresponding quadrature coeffi-
cients. We would require
f̂ ðU�ðxðtÞ; yðtÞ; tÞ;UþðxðtÞ; yðtÞ; tÞÞ ¼ f UðxðtÞ; yðtÞ; tÞð Þ þ OðhrÞ;
ûðu�ðxðtÞ; yðtÞ; tÞ;uþðxðtÞ; yðtÞ; tÞÞ ¼ uðxðtÞ; yðtÞ; tÞ þ OðhrÞ; ð29Þ
v̂ðv�ðxðtÞ; yðtÞ; tÞ;vþðxðtÞ; yðtÞ; tÞÞ ¼ vðxðtÞ; yðtÞ; tÞ þ OðhrÞ;Z
@Iij

f̂ ðU�ðxðtÞ; yðtÞ; tÞ;UþðxðtÞ; yðtÞ; tÞÞdl ¼
XS

s¼1

XQ

q¼1

xqf̂ ðU�q ðtÞ;U
þ
q ðtÞÞls þ OðhrÞ; ð30Þ

Z tnþ1

tn

f̂ ðU�q ðtÞ;U
þ
q ðtÞÞdt ¼ Dt

XK

k¼0

akf̂ ðtn þ bkDtÞ þ OðDtrþ1Þ;

Z tnþ1

tn

ûqðtÞdt ¼ Dt
XK

k¼0

akûqðtn þ bkDtÞ þ OðDtrþ1Þ; ð31Þ

Z tnþ1

tn

v̂qðtÞdt ¼ Dt
XK

k¼0

akv̂qðtn þ bkDtÞ þ OðDtrþ1Þ:
Similar to the 1D case, if we use a consistent and Lipschitz continuous numerical flux, combined with accurate numerical
integration, we only need to find a reconstruction of U which is at least rth order accurate on the Gaussian quadrature points
for a rth order accurate scheme
U�q ðtn þ bkDtÞ ¼ Uqðtn þ bkDtÞ þ OðhrÞ;
u�q ðtn þ bkDtÞ ¼ uqðtn þ bkDtÞ þ OðhrÞ; ð32Þ
v�q ðtn þ bkDtÞ ¼ vqðtn þ bkDtÞ þ OðhrÞ:
Since we only have cell average variables at tn, we would need to use a Taylor expansion to get the value at the Gaussian
quadrature points
U�q ðtn þ bkDtÞ ¼ Un�
q þ

Xr�1

l¼1

ðbkDtnÞl

l!
dlU�q
dtl
þ OðDtrÞ;

u�q ðtn þ bkDtÞ ¼ un�
q þ

Xr�1

l¼1

ðbkDtnÞl

l!
dlu�q
dtl
þ OðDtrÞ; ð33Þ

v�q ðtn þ bkDtÞ ¼ vn�
q þ

Xr�1

l¼1

ðbkDtnÞl

l!
dlv�q
dtl
þ OðDtrÞ:
The Taylor expansion tells us that in order to get a rth order accurate scheme, we should find a reconstruction to satisfy the
following equations
Un�
q ¼ Un

q þ OðhrÞ;
un�

q ¼ un
q þ OðhrÞ; ð34aÞ

vn�
q ¼ vn

q þ OðhrÞ;

dlUn�
q

dtl
¼

dlUn
q

dtl
þ OðDtr�lÞ;

dlun�
q

dtl
¼

dlun
q

dtl
þ OðDtr�lÞ; ð34bÞ

dlvn�
q

dtl
¼

dlvn
q

dtl
þ OðDtr�lÞ; l ¼ 1;2; . . . ; r � 1:
As before, using the Lax–Wendroff procedure, (34a) and (34b) can be guaranteed if we have
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@lUn�
q

@xl
¼
@ lUn

q

@xl
þ Oðhr�lÞ;

@lun�
q

@xl
¼
@ lun

q

@xl
þ Oðhr�lÞ; ð35aÞ

@lvn�
q

@xl
¼
@lvn

q

@xl
þ Oðhr�lÞ; l ¼ 0;1;2; . . . ; r � 1

@lUn�
q

@yl
¼
@ lUn

q

@yl
þ Oðhr�lÞ;

@lun�
q

@yl
¼
@ lun

q

@yl
þ Oðhr�lÞ; ð35bÞ

@lvn�
q

@yl
¼
@lvn

q

@yl
þ Oðhr�lÞ; l ¼ 0;1;2; . . . ; r � 1:
Again, this is automatically achieved by a rth order ENO reconstruction. Therefore, we can use an ENO reconstruction to get
our second-order scheme on quadrilateral meshes and third-order scheme on curvilinear meshes.

Remark 1. The time step Dtn is chosen as follows
Dtn ¼ k min
i¼1;...;Nx ;j¼1;...;Ny

Dlni;j=cn
i;j

� �
;

where Dln
i;j is the length of the shortest edge of the cell Ii;j and cn

i;j is the sound speed within the cell. The Courant number k is
set to be 0.5 in the following numerical tests unless otherwise stated.

Remark 2. In the third-order case, we also use the WENO reconstruction in some test cases because it is more robust than
the ENO procedure. The details of the choice for the weights can be found in [3,5].

Remark 3. After the reconstruction, we obtain two approximation values at each Gaussian quadrature points on the edge of
the mesh. Similar to the 1D case, A consistent Lipschitz continuous numerical flux is then used. Again, we will use the fol-
lowing four typical numerical fluxes: (1) the Godunov flux; (2) the Dukowicz flux; (3) the Lax–Friedrichs (L–F) flux; (4) the
HLLC flux, although we will only show the results obtained with the Dukowicz flux and the HLLC flux to save space. When
approximating the integral on each cell edge, we use a trapezoid rule for the second-order case and a four-point Gauss–Lob-
atto quadrature in the third-order case.

Remark 4. Vertex velocity (and, for the third-order case, also cell edge center velocity) is determined in a similar fashion as in
the 1D case. The tangential velocity of the vertex (or edge center) along the edge is defined as a simple average of that in both
sides. The normal velocity is defined as the Roe average for the L–F flux and the HLLC flux, and for the Godunov flux and the
Dukowicz flux, it is obtained by the value of velocity through the Riemann solver solved along the normal direction of the edge.
3.2. Algorithm description

We now describe our algorithm in detail. Starting from the mesh and the approximate cell averages of the solution at time
level tn, we will proceed as follows.

1. At each Gaussian quadrature point on the edge of the cell, use a rth characteristic-wise ENO (or WENO) reconstruction to

get the value of Un�
q and @lUn�

q

@xl for l ¼ 1;2; . . . ; r � 1, from the cell averages Un
ij.

2. Calculate the derivatives at the spatial Gaussian quadrature points by using the information from the reconstruction poly-

nomial. First, compute u;v ; p;ux;uy;vx;vy; px; py by using Un�
q ;

@Un�
q

@x and @Un�
q

@y
u ¼ M=q;
v ¼ N=q;
p ¼ ðc� 1ÞðE� 0:5qu2 � 0:5qv2Þ;
ux ¼ ðMx � uqxÞ=q;
uy ¼ ðMy � uqyÞ=q; ð36Þ
vx ¼ ðNx � vqxÞ=q;
vy ¼ ðNy � vqyÞ=q;
px ¼ ðc� 1ÞðEx � 0:5uxM � 0:5uMx � 0:5vxN � 0:5vNxÞ;
py ¼ ðc� 1ÞðEy � 0:5uyM � 0:5uMy � 0:5vyN � 0:5vNyÞ:
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Then, compute qt ;Mt ;Nt ;ut ;v t ; Et ; pt
qt ¼ �Mx � Ny;

Mt ¼ �uxM � uMx � vyM � vMy � px;

Nt ¼ �uxN � uNx � vyN � vNy � py;

ut ¼ ðMt � uqtÞ=q; ð37Þ
v t ¼ ðNt � vqtÞ=q;
Et ¼ �Exu� Eux � pxu� pux � Eyv � Evy � pyv � pvy;

pt ¼ �upx � vpy � cpðux þ vyÞ:
In order to compute qtt;Mtt; Ett , first compute uxx; uyy;uxy;vxx;vyy;vxy; pxx; pyy; pxy;qxt;qyt;Mxt ;Myt ;Nxt ;Nyt; Ext ; Eyt ;uxt ;uyt;vxt ;

vyt; pxt ; pyt
uxx ¼ ðMxx � uqxx � 2uxqxÞ=q;
uyy ¼ ðMyy � uqyy � 2uyqyÞ=q;
uxy ¼ ðMxy � uqxy � uyqx � uxqyÞ=q;
vxx ¼ ðNxx � vqxx � 2vxqxÞ=q;
vyy ¼ ðNyy � vqyy � 2vyqyÞ=q;
vxy ¼ ðNxy � vqxy � vyqx � vxqyÞ=q;
pxx ¼ ðc� 1Þ Exx � 0:5ðMuxx þ 2uxMx þ uMxxÞ � 0:5ðNvxx þ 2vxNx þ vNxxÞð Þ;
pyy ¼ ðc� 1Þ Eyy � 0:5ðMuyy þ 2uyMy þ uMyyÞ � 0:5ðNvyy þ 2vyNy þ vNyyÞ

� �
;

pxy ¼ ðc� 1ÞðExy � 0:5ðMuxy þ uxMy þ uyMx þ uMxyÞ � 0:5ðNvxy þ vxNy þ vyNx þ vNxyÞÞ;
qxt ¼ �Mxx � Nxy;

qyt ¼ �Mxy � Nyy;

Mxt ¼ �2uxMx � uMxx �Muxx � vxMy � vMxy � vyMx � vxyM � pxx;

Myt ¼ �2vyMy � vMyy �Mvyy � uxMy � uMxy � uyMx � uxyM � pxy;

Nxt ¼ �2uxNx � uNxx � Nuxx � vxNy � vNxy � vyNx � vxyN � pxy; ð38Þ
Nyt ¼ �2vyNy � vNyy � Nvyy � uxNy � uNxy � uyNx � uxyN � pyy;

Ext ¼ �2uxEx � uExx � Euxx � 2pxux � puxx � upxx � vxEy � vExy � vyEx � vxyE� pxyv � pyvx � pxvy � pvxy;

Eyt ¼ �2vyEy � vEyy � Evyy � 2pyvy � pvyy � vpyy � uyEx � uExy � uxEy � uxyE